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Abstract. We present a rationale for the success of nonoscillatory �nite volume (NFV)
di�erence schemes in modeling turbulent 
ows without need of subgrid scale models. Our
exposition focuses on certain truncation terms that appear in the modi�ed equation of one
particular NFV scheme, MPDATA. We demonstrate that these truncation terms have
physical justi�cation, representing the modi�cations to the governing equations that arise
when one considers the motion of �nite volumes of 
uid over �nite intervals of time.
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1 Introduction

Recently, a class of �nite di�erence methods has exhibited the remarkable property of
producing large eddy simulations (LES) of turbulent 
ow without recourse to any explicit
subgrid scale model [8, 11, 12]. These, the nonoscillatory �nite volume (NFV) schemes,
so far are the only class of schemes to demonstrate this property, which we term implicit
turbulence modeling.

The goal of this paper is to provide a rationale for the implicit turbulence modeling
ability of the NFV schemes. It is clear that the e�ects of the unresolved scales of motion are
modeled by the propitious form of the truncation error of the numerical approximations.
Our approach here will be to analyze the numerical scheme through its modi�ed equation
| the PDE that the algorithm more closely approximates including the most important
truncation terms. We will perform this analysis in the context of Burgers' equation in one
dimension. It will be clear that the issues lie in the treatment of the advective terms, and
that the derivation can be readily extended to more dimensions, and to other equations.

We will begin our investigation in section 2 by analyzing the speci�c NFV scheme
MPDATA [16, 7] applied to Burgers' equation. We will construct its modi�ed equation,
keeping terms up to the third order in space and time. MPDATA in particular is second-
order accurate, meaning that its largest truncation error is of third order. We will focus
on a particular third-order truncation term, the product of a �rst-order and a second-
order spatial derivative | uxuxx. We refer to this as the nonlinearly dispersive term.
Qualitatively, terms with similar form appear in other physical theories. For example,
terms of this general form are derived to regularize momentum transfer in shocked 
ows
[10]. Perhaps of more relevance, terms of this form also appear in several turbulence
models [15, 6, 19], and in particular in a newly proposed large-eddy theory known as
�-models [2, 3]. We will brie
y review these theories and models in section 3.

Such associations are suggestive, but hardly su�cient to serve as a compelling rationale
for using NFV schemes for implicit turbulence modeling. Indeed, one might suspect that
a more fundamental principle underlies all of these theories and could provide a unifying
perspective. One common feature of many (if not all) of these theories is that they apply
to �nite volumes of the 
uid. This recognition has led us to consider the di�erence between
the governing equations of an in�nitesimal point of 
uid and a �nite volume of 
uid. The
equations governing a �nite volume of 
uid are derived from the point equations, but are
di�erent due to the nonlinearity of the advective terms in the latter | a fact that has
been long appreciated by theorists and modelers studying turbulence. What is unexpected
is that a straightforward and justi�able derivation of the �nite volume equations leads
directly to nonlinearly dispersive terms.

Details and discussion of this derivation will be given in section 4. Here we preview
the main conclusion of this paper. If the modi�ed equation of the numerical scheme is
compared to the point equations, one would identify the nonlinearly dispersive terms as
truncation error. However, since we are approximating the evolution of a �nite volume
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(i.e., a computational cell), it is more appropriate to compare the modi�ed equation to
the �nite volume equations; then we realize that these terms are not numerical error,
but legitimately describe the physics. We conclude that the success of NFV schemes is a
re
ection of their more accurate approximation of the governing equations for the motion
of a �nite volume of 
uid and the associated entropy production.

We have been careful to emphasize the qualitative nature of the appearance of the
nonlinearly dispersive terms. There is no a priori reason to believe that the dimensionless
coe�cients of these terms in the numerical algorithm are "correct" | perhaps optimal is a
better word. Departing here from our analytic approach, we have constructed a model for
simulating Burgers' equation using fourth-order accurate Runge-Kutta methods. To this
algorithm, we can explicitly add various third-order terms, separately or in combination,
and with arbitrary coe�cients.

Our main application of this model will be to validate the use of the modi�ed equation
as a continuous proxy of the numerical algorithm. As the modi�ed equation is based on
Taylor series expansion, one might be concerned that the series is not convergent at the
shortest resolved wavelengths and so not relevant. In section 6, we will use our high-
order Burgers' model to explicitly address this concern. In particular, we will compare
a simulation using MPDATA to an equivalent simulation of its modi�ed equation; the
correspondence of the two calculations lends credence to our approach. We will also use
our model to evaluate the importance of the truncation error terms that do not have a
physical analog.

2 MPDATA

Our goal in this section is to provide a brief introduction to the NFV scheme MPDATA,
and to the derivation of its modi�ed equation. MPDATA (Multidimensional Positive
De�nite Advection Transport Algorithm) is a particular example of an NFV scheme.
We emphasize that implicit turbulence modeling is not a unique property of MPDATA,
but is shared by many (if not all) NFV schemes. We have chosen to use MPDATA as
our paradigm partly because it is amenable to analysis and partly because of our own
familiarity with this scheme. A complete review of MPDATA including its properties and
its many options can be found in [16].

By nonoscillatory, we identify properties such as sign preservation or monotonicity
preservation. These properties have great practical importance in numerical simulations,
since they are closely connected [9] to the second law of thermodynamics. In particular,
nonoscillatory schemes, with suitable restrictions on the computational time step, are
nonlinearly stable. In general, these methods have adaptive �nite di�erence stencils and
are nonlinear even for linear equations. By �nite volume, we single out those schemes
written in 
ux form, as opposed to advective form. Flux form schemes estimate the
advective terms as the sum of 
uxes entering and leaving a volume (i.e., computational
cell), rather than estimating these terms at a single point. Because of detailed balance
| that the 
ux into a cell is exactly the negative of the 
ux leaving its neighbor | 
ux
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form schemes are conservative to the level of numerical roundo� error.
Although most NFV scheme are based on the idea of 
ux limiting, MPDATA is formu-

lated more directly on the iterated properties of upstream di�erencing. In its most basic
form, MPDATA is sign preserving (but not monotonicity preserving), and second-order
accurate. MPDATA is a two-time level algorithm. It is a multidimensional scheme, and
its implementation does not involve spatial splitting.

A basic tool in developing MPDATA is Taylor series analysis, leading to the concept of
the modi�ed equation. Here we describe the derivation of the basic MPDATA algorithm
to simulate the simple case of one-dimensional advection of a scalar  (x; t) by a constant
velocity �eld a.

 t = �a x (1)

The �rst step is a upwind donor cell scheme; the scheme depends on the sign of the
velocity

 n+1
j =  n

j � (fj+ 1
2
� fj� 1

2
) (2)

where the 
ux is:

fj+ 1
2
=
A

2

�
 n
j +  n

j+1

�
�
jAj

2

�
 n
j+1 �  n

j

�
: (3)

In common notation, the subscript j identi�es the computational cell, the superscript n
the time, and A = a�t

�x
is the Courant number. Here �x is the cell width, and �t is the

time step. Note that the 
ux (i.e., the spatial derivative) has been estimated one-half cell
upstream, where the upstream direction is determined by the sign of a.

The scheme (2) and (3) are stable and sign preserving when the Courant number is
bounded: A 2 [�1; 1]. However these schemes are only �rst-order accurate. That is,
expanding the discrete �eld  n

j in a Taylor series as if it were a continuous function, we
�nd that (2) and (3) more accurately approximate the advection-di�usion equation

 t = �a x + @x (K x) (4)

where the di�usion coe�cient K = �x2

2�t
(jAj � A2). Under the assumed bounds on the

Courant number, the di�usion coe�cient K is positive thus insuring stability. We say
the scheme is �rst-order accurate, meaning that the error is of order O(�x2) relative to  
itself. We refer to (4) as the modi�ed equation of the scheme (2) and (3).

To derive a more accurate algorithm, one can compensate the second-order (i.e., di�u-
sional) error, by estimating the error and subtracting it in the algorithm. The essence of
MPDATA is how we estimate that error; to preserve the nonoscillatory properties of the
solution, we use an upstream estimate of the error. We write the error term in advective
form

@x (K@x ) ' @x
�
a(1) 

�
(5)

where

a(1) �
�x2

2�t
(jAj � A2)

1

 
@x (6)
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is called a pseudo velocity. To complete the basic MPDATA algorithm, we now do a
second step, repeating (2) using the pseudo velocity in (3). Note that if  j is de�ned at
the centers of computational cells, then the pseudo velocity is de�ned at the cell edges
halfway between the cell centers, and varies in space and time even though a is constant.
It is easy to show that the bounds on the physical Courant number imply the same
bounds on the pseudo velocity. Each step of the algorithm is stable and sign-preserving
and therefore the overall scheme also has these properties. The error terms in the modi�ed
equation of basic MPDATA (not shown) now appear at the third order, implying that
MPDATA is a second-order algorithm.

The extension of the MPDATA algorithm to Burgers' equation

ut = �uux + �uxx ; (7)

where u is the 
uid velocity and � is the viscous di�usivity, is straightforward; details of
this extension are discussed in [16]. The derivation of its modi�ed equation is most easily
done using computer manipulation tools; we present the modi�ed equation here without
derivation. To facilitate comparison with our analytic results, we denote the solution of
the MPDATA algorithm by �u as the cell-averaged velocity.

�ut = � �u�ux + ��uxx + �

 
�uxxtt(�t)

2

8
+

�uxxxx(�x)
2

12

!
+

 
jU j

4
�

1

6

!
�u�uxxx(�x)

2 (8)

+
(1� jU j)(�x)2

4
(j�uxj�uxx � �ux�uxx)�

�t �x

4

�
sgn(U)j�uxj(�ux)

2 � U(�ux)
3
�
+ � � �

Here U � �u�t
�x

and sgn(U) � jU j
U
. We note that some of the dimensionless coe�cients may

change depending on the details of the implementation of MPDATA. We have assumed
that the di�usive term is centered in time | see section 3.3 in [16].

The MPDATA algorithm for Burgers' equation depends on both the sign of �u and
the sign of �ux. Equation (8) uni�es the four combinations that can occur generally in a
single formula. We add that this equation also describes the situation when the advective
velocity changes sign across the cell. However it is not valid for those cells where the
gradient of the velocity changes sign across the cell. In these cells, which represent local
minima or maxima of the velocity �eld, MPDATA becomes only �rst-order accurate.

3 Physical Theories and Computational Models

The goal of this section is to point out the resemblance of our results to previous
work, both theoretical and computational. First we will brie
y review a variety of results.
Then we will discuss in more detail a recently proposed set of equations for turbulent

ows, generically named the Navier-Stokes alpha model (��model). We will see that the
theoretical and computational models are very similar in form, but with one essential
di�erence: The computational models are strictly dissipative while the theoretical models
are not. In the end, the di�erence is whether the model is locally as well as globally
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dissipative. Our results follow this pattern as well, and we will o�er some discussion in
section 5. With regard to the �-model, we will show that the equations are very similar
to our analytic results in section 4; however the derivation, the assumptions and even the
interpretation of the equations are very di�erent.

3.1 Survey of Theories and Models

Let us begin by noting that the presence of the nonlinear term �uxuxx in the right-
hand-side of the momentum equation leads to (ux)

3 in the associated energy equation (see
section 5). This term is dissipative in compression, but not in expansion. On the other
hand, the nonlinear term juxjuxx leads to �j(ux)

3j, which is always dissipative.
On the theoretical side, Bethe [1] showed that the rate of entropy production across a

shock is

T
@S

@t
= �

G

12cs
(�u)3 (9)

where S is the entropy, T is the temperature, cs is the sound speed and G is the fun-
damental thermodynamic derivative @2p

@V 2 . Note that this expression increases entropy in
compression, but decreases in expansion.

In hydrodynamic turbulence, Kolmogorov [5] has derived a remarkably similar form

�
@K

@t
L =

@S

@t
L = �

5

4
(�u)3 (10)

where K is the kinetic energy, and the bar indicates spatial averaging over the length L.
Frisch [4] has derived a similar formula for the regularization of shocks in a Burgers 
uid

@K

@t
L =

1

12
(�u)3 (11)

As in Bethe's formula, the entropy is increased in compression in each of these formulas,
but decreases in expansion.

In the �eld of computational 
uid dynamics, it has been known for more than �fty
years that direct simulation of the compressible Navier-Stokes equations for high speed

ows with shocks leads to unphysical oscillations. In a seminal paper, Von Neumann and
Richtmyer [10] attributed these oscillations to the lack of su�cient entropy production
in the shock, and suggested adding an arti�cial viscosity to augment the pressure in the
momentum and energy equations. The arti�cial viscosity, which is added to the physical
pressure, has the one-dimensional form:

q = �c �x2uxjuxj (12)

where �x is the computational cell size and c is a dimensionless constant of order unity.
Note that it is the gradient of q that enters the momentum equation. The absolute value
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sign guarantees energy dissipation and entropy production. In modern shock wave codes,
the viscosity usually is turned o� in expansion altogether.

For numerical applications to turbulent 
ows, Smagorinsky [15] proposed a multidi-
mensional subgrid model for the Reynolds stress:

�ij = ��TSij (13)

where Sij �
1
2
( @ui
@xj

+
@uj
@xi

) and the turbulent viscosity �T �
�
c�x2 SijSij

� 1
2 . Here again, c

is a dimensionless constant. The similarity between (12) and (13) is not accidental { see
[13, 14]. Note again that the Smagorinsky model is absolutely dissipative.

Leonard [6] has proposed an expansion for the advective terms, based on the Gaussian
�lter. The Leonard expansion is:

du ux ' bu cux + (�)2cuxduxx + (�)4

2!
duxx duxxx + � � � (14)

Here the top hat indicates spatial �ltering over the length scale �. Unlike the previous
computational models, this model is not absolutely dissipative. More recently, Winck-
elmans et al. [19] have discussed the Leonard model, noting that it provides signi�cant
backscatter, but not su�cient dissipation. They suggest augmenting the model with a
(dynamic) Smargorinsky term to increase the dissipation of energy.

3.2 Burgers �-Model

The �-models were introduced to describe the mean motion of ideal incompressible

uids (cf. [2, 3] and the references therein). They are derived in an elegant Euler-Poincar�e
formalism, which is the Lagrangian version of the Lie-Poisson Hamiltonian framework. In
the derivation one does a Reynolds decomposition of the motion of a 
uid parcel along
a Lagrangian trajectory. When the formalism is applied to one-dimensional Burgers
equation, one derives

vt = �@x

 
�uv �

1

2
(�u)2 �

�2

2
(�ux)

2

!
+ �vxx; (15)

v � �u� �2�uxx:

Here the length scale � is introduced into the theory as a closure assumption concerning
the correlation of 
uctuating displacements, and so represents a property of the 
ow.
Both �u and v are velocities. In applications to LES turbulence modeling v is the un�ltered
(or de�ltered) velocity while �u is the �ltered velocity. Here we identify �u with the mean
Eulerian velocity. Eliminating v from (15), and then di�erentiating the resulting equation
to approximate and eliminate the cross-derivative �uxxt, we derive

ut = ��u�ux � �2�ux�uxx + �
�
�uxx � �2�uxxxx

�
(16)
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This result should be compared with our own analytic result (24) in section 4. The latter
has additional terms resulting from the averaging in time and proportional to the time
scale T . These same terms are missing in the Leonard model. Like the other analytic
results reviewed here, the �-model is not absolutely dissipative. Thus one might suspect
the need to add extra dissipation when employing the �-model for LES.

4 Finite Volume Equations

In this section we derive our principal result, the equations that describe the evolution
of �nite volumes of Burgers 
uid. First we will consider smooth (i.e., laminar) 
ows.
Using Taylor series expansion, we will integrate Burgers' equation over a �nite interval
in space and time, leading to analytic equations very similar in form to the modi�ed
equations of MPDATA (8). We note that this procedure and result do not apply to
turbulent 
ows without additional assumptions and derivation. We will then describe
a physically reasonable assumption and analysis that justi�es using the same volume-
averaged equations for turbulent 
ows as for laminar 
ows.

4.1 Laminar Flows

We again consider a one-dimensional 
uid governed at each in�nitesimal point by
Burgers' equation. First we will assume that the 
ow is smooth on the length scale L and
time scale T | i.e., that all 
ow features are resolved on these scales. We will refer to
such a 
ow as being laminar on the scales L and T . Because of the assumed smoothness,
we can expand the velocity u in a local Taylor series in space and time:

u(x+ x0; t+ t0) = u(x; t) + uxx
0 + utt

0 + uxx
(x0)2

2
+ uxtx

0t0 + utt
(t0)2

2
+ � � � (17)

Then we can de�ne an averaged (in space and time) velocity

�u(x; t) �
1

LT

Z L
2

�L
2

Z T
2

�T
2

u(x+ x0; t+ t0)dx0dt0 (18)

= u(x; t) +
1

6
uxx

�
L

2

�2
+
1

6
utt

�
T

2

�2
+ � � �

since the odd terms integrate to zero over the symmetric interval. Now �u(x; t) is a con-
tinuous function, and so its derivatives can be de�ned. For example,

�ux = ux +
1

6
uxxx

�
L

2

�2
+
1

6
uxtt

�
T

2

�2
+ � � � (19)

Note that in general, �ux 6= ux.
Our goal is to derive the equations that govern the evolution of �u. The �rst step is

to average Burgers' equation (7) term by term. The linear terms are easily treated. For
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example,

ut = ut +
1

6
uxxt

�
L

2

�2
+
1

6
uttt

�
T

2

�2
+ � � � (20)

and

�uxx = �

 
uxx +

1

3
uxxxx

�
L

2

�2
+
1

3
uxxtt

�
T

2

�2
+ � � �

!
(21)

A direct evaluation of the nonlinear (advective) term yields:

uux = uux +
1

6

�
L

2

�2
(3uxuxx + uuxxx) +

1

6

�
T

2

�2
(2utuxt + uuxtt + uxutt) + � � � (22)

where we have shown all terms of O(L2; T 2) or lower.
At this point, the averaged equation is still written in terms of the point velocities.

The second step then is to invert the set of forward relations of which (18) and (19) are
two examples. When the point velocity u is smooth enough, we can invert the Taylor
series, to write:

u(x; t) � �u(x; t)�
1

6
�uxx

�
L

2

�2
�

1

6
�utt

�
T

2

�2
+ � � � (23)

Higher-order terms can be easily found by di�erentiating this expression.
Now we substitute the inverse relations into the averaged Burgers' equation terms (20),

(21) and (22) to derive [to O(L2; T 2)]

�ut = � �u�ux �
1

3
�ux�uxx

�
L

2

�2
�

1

3
�ut�uxt

�
T

2

�2
(24)

+ �

"
�uxx +

1

6
�uxxxx

�
L

2

�2
+
1

6
�uxxtt

�
T

2

�2#

which is the evolution equation for �u.
Finally, it is convenient to rewrite �ut�uxt in terms of spatial derivatives, by using (24).

Neglecting terms of O(�2), we �nd

�ut = � �u�ux �
1

3
�ux�uxx

�
L

2

�2
�

1

3

�
�u�u3x + �u2�ux�uxx

� �T
2

�2
+ ��uxx +

�

6

�
(�ux)

2�uxx + �u(�uxx)
2 + �u�ux�uxxx

��T
2

�2
(25)

+ �

"
1

6
�uxxxx

�
L

2

�2
+
1

6
�uxxtt

�
T

2

�2#

4.2 Turbulent Flows

Let us now consider 
ows that are not smooth on the scales L0 and T 0, meaning that
the Taylor series (17) does not converge su�ciently rapidly. We will refer to such 
ows
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are being turbulent on the scales L0 and T 0. The derivation of (24) can not be justi�ed
for such turbulent 
ows without further assumptions; i.e., if the Taylor series expansion
is inaccurate, then both the forward transformation (17) and also the inverse relation
(23) are questionable, or may require keeping many higher-order terms. In the previous
derivation, the connection between the average velocity �u and the point velocity u was
critical, since it is only the latter for which we know the governing equation. However the
result of this derivation was an equation for �u. Furthermore, since �u is averaged in length
and time, we expect that it is smoother than u. This suggests an new strategy, in which
we consider a hierarchy of velocity �elds, and attempt to bootstrap our results.

Let us de�ne the velocity �elds averaged over the arbitrary scales L0 and T 0 by:

�u(x; t; L0; T 0) �
Z L0

2

�L0

2

Z T 0

2

�T 0

2

u(x+ x0; t+ t0)dx0dt0 (26)

For brevity, we suppress the coordinate dependence, implying all functions are evaluated
at (x; t) except where explicitly noted otherwise. Let us now make two assumptions: the
averaged velocity �u(L0; T 0) is smooth on its own scales (L0; T 0), and there is some set of
scales (L; T ) for which point velocity u(x; t) is smooth.

The �rst assumption is meant to imply that we can expand �u(L0; T 0) in a Taylor series
in a region somewhat bigger than (L0; T 0). From a computational point of view, we
mean that the 
ow can be modeled in a numerical simulation where �u(L0; T 0) is a cell-
averaged quantity whose evolution can be described by a partial di�erential equation.
This interpretation also indicates quantitatively how convergent the Taylor series need
be | the remainder of the Taylor series should be of the same order or less than the
truncation error of the numerical algorithm.

From the second assumption, we infer there is some set of scales (L; T ) for which the
point velocity u(x; t) has a su�ciently convergent Taylor series. These are the scales for
which simulations are DNS. The results (24) of the previous section then apply, so that

�ut(L; T ) = � �u(L; T )�ux(L; T )�
1

3
�ux(L; T )�uxx(L; T )

�
L

2

�2
(27)

�
1

6
�ut(L; T )�uxt(L; T )

�
T

2

�2
+ ��uxx(L; T )

Now let us consider the averaged velocity at twice the scales | (2L; 2L).

�u(2L; 2T ) �
1

4LT

"Z 0

�L

Z 0

�T
u(x+ x0; t+ t0)dx0dt0 +

Z L

0

Z 0

�T
u(x+ x0; t+ t0)dx0dt0(28)

+
Z 0

�L

Z T

0
u(x+ x0; t+ t0)dx0dt0 +

Z L

0

Z T

0
u(x+ x0; t+ t0)dx0dt0

#
or

�u(x; t; 2L; 2T ) �
1

4

�
�u(x�

L

2
; t�

T

2
; L; T ) + �u(x+

L

2
; t�

T

2
; L; T ) (29)
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+ �u(x�
L

2
; t+

T

2
; L; T ) + �u(x+

L

2
; t+

T

2
; L; T )

�
Using our �rst assumption, we expand �u(x; t; 2L; 2T ) in a Taylor series to write (for
example):

�u(x+
L

2
; t+

T

2
; L; T ) � �u(x; t; L; T ) +

�
L

2

�
�ux(L; T ) +

�
T

2

�
�ut(L; T ) (30)

+
�
LT

4

�
�uxt(L; T ) +

1

2

�
L

2

�2
�uxx(L; T ) + � � �

and similarly for the other three terms of (28). Combining (29) and (30) leads to:

�u(2L; 2T ) � �u(L; T ) +
1

2

�
L

2

�2
�uxx(L; T ) +

1

2

�
T

2

�2
�utt(L; T ) + � � � (31)

This is the analog of (18) in the previous subsection. However we have expressed �u(2L; 2T )
in terms of �u(L; T ), and so avoided the issues concerning the smoothness of u(x; t) on the
scales (2L; 2T ).

Next, we construct the approximate inverse relation:

�u(L; T ) � �u(2L; 2T )�
1

2

�
L

2

�2
�uxx(2L; 2T )�

1

2

�
T

2

�2
�utt(2L; 2T ) + � � � (32)

Higher-order terms again can be found by di�erentiating this equation.
Now we have set up the transformations between �u(L; T ) and �u(2L; 2T ) and so our

procedure will be to average Burgers' equation (7) over the twice-wide intervals [�L;L]
and [�T; T ], writing the results in terms of �u(L; T ) and its derivatives. Then we will
use the inverse relations to express the results in terms of �u(2L; 2T ) and its derivatives.
Assembling the terms then yields the Burgers' equation at the scales [2L; 2T ].

There is one subtlety in the process, which is to write each twice-wide integral as the
sum of four integrals as was done in (28). Each of these four integrals can now be written
as a function of �u(x � L

2
; t � T

2
; L; T ). Thus, we must expand each of these terms about

(x; t). We show the result of this process for the nonlinear term:

uux(2L; 2T ) � �u(L; T )�ux(L; T )

+
1

6

�
L

2

�2
[3�ux(L; T )�uxx(L; T ) + �u(L; T )�uxxx(L; T )] (33)

+
1

6

�
T

2

�2
[(2�ut(L; T )�uxt(L; T ) + �u(L; T )�uxtt(L; T ) + �ux(L; T )�utt(L; T )]

Finally, substituting the inverse relations (32), we derive the following result:

�ut(2L; 2T ) = � �u(2L; 2T )�ux(2L; 2T ) + ��uxx(2L; 2T )�
L2

3
�ux(2L; 2T )�uxx(2L; 2T )(34)

�
T 2

6
�ut(2L; 2T )�uxt(2L; 2T ) + �

"
L2

6
�uxxxx(2L; 2T ) +

T 2

6
�uxxtt(2L; 2T )

#
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Note that (34) is exactly (27), written for its own scales. Said in a di�erent way, (34) is
exactly the equation we would have gotten by integrating of the point velocities u(x; t),
if we had not been concerned about the convergence rates of the Taylor series and the
inverse approximation. It is clear now that we can repeat this process, integrating Burgers
equation over the scales [4L; 4T ], etc. and relating the averaged terms to �u(2L; 2T ) and
its derivatives. We conclude that the fundamental equation (24) or equivalently (25) holds
at all scales.

In considering (24) or (25), one should remember that underlying every realization of
the averaged 
ow �u(x; t), there are many possible 
ow �elds u(x; t). Some of these are
smooth, some are not smooth; yet all evolve identically. This leads to two conclusions:

� The description of the 
ow in terms of �u(x; t; L; T ) depends on the scales with which
it is observed. That is, L and T are scales of the observer, not of the 
ow.

� The unresolved scales do not play a signi�cant role in the evolution of �u(x; t; L; T ).

The �rst conclusion distinguishes our theory from the �-model, where the length scale �
is assumed to derive from the properties of the 
ow. In our derivation, all length and time
scales must derive from the equations themselves. We have neglected such possibilities in
our statement of the problem, where the only physical length scale is associated with the
viscosity and so is too small to play a role in the LES simulations. More generally, physical
scales may arise from the initial or boundary conditions, from the forcings, or additional
coupled physical processes. Each of these would require extensions to our theory.

5 Comparison of Theory and Algorithms

The close similarity of the analytic equations (25) that govern the motion of a �nite
volume of "Burgers" 
uid and the modi�ed equations of MPDATA (8) provides a con-
vincing rationale for the success of NFV schemes in simulating unresolved turbulent 
uid

ow. The new terms that represent the e�ects of considering �nite volumes of 
uid, de-
rived in the previous section, correspond to terms in the modi�ed equation, which arise
from the �nite volume approximations in the algorithm. This analogy underscores the im-
portance of using a second-order accurate algorithm; a lower-order numerical truncation
error would dominate those new "physical" terms.

A close comparison of these two equations also shows a few di�erences, in the values
of some of the dimensionless coe�cients, the appearance of a purely dispersive term �uxxx,
and also in the signi�cant appearance of an absolute value sign in the modi�ed equation.
As to the values of the dimensionless coe�cients and the dispersion, it appears that the
important questions concern the sensitivity of the simulation rather than accuracy. We
will defer addressing these questions to the next section. In this section, we will discuss
the issues associated with the absolute value sign.

We begin by comparing the �nite volume energy equations, which are derived by mul-
tiplying the momentum equation by the average velocity �u, and integrating by parts. For
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the analytic equation (25), we derive

1

2
(�u2)t = �@x

 
�u

"
�u2

3
+

�u2x (1 + U2=2)

6

�
L

2

�2#!
+

�u3x (1 + U2=2)

6

�
L

2

�2
+O(�) (35)

where the dimensionless quantity U � �uL
T
. Our notation does not imply that we believe

the viscous terms O(�) are necessarily small, but that we are only concerned with the
inviscid dissipation here. Note that the term on the right-hand-side inside the derivative
represents advection and does not change the global balance of energy. However the
term proportional to (ux)

3 does alter the global energy. Furthermore, this term may be
positive or negative; in particular, in regions of expansion the large scales of motion can
absorb energy from the smaller (unresolved) scales of motion. From a physical point of
view, this is correct. The inverse cascade, sometimes termed stochastic backscatter, is
a well understood process in turbulence and plays an important role in determining the
variability of the 
ow. From a numerical point of view, however, the term �uxuxx in
the momentum equation would appear to be a negative di�usion in regions of expansion
potentially leading to numerical instability.

Now let us consider the �nite volume energy equation derived from the MPDATA
modi�ed equation (8). There are two cases to consider, when �ux > 0 (expansion) and
when �ux < 0 (compression). First, in expansion:

1

2
(�u2)t = � @x

 
�u

"
�u2

3

#!
+

 
jU j

4
�

1

6

!
�u2�uxxx (�x)

2 (36)

�
j�uxj

3 (jU j � U2)

4
(�x)2 +O(�)

while in compression we get added terms:

1

2
(�u2)t = � @x

 
�u

"
�u2

3
+

�u2x(1� jU j)

4
(�x)2

#!
+

 
jU j

4
�

1

6

!
�u2�uxxx (�x)

2 (37)

�
juxj

3 (1� jU j)2

4
(�x)2 +O(�)

The modi�ed equations of MPDATA (and other NFV schemes) have a coe�cient of zero
for the �ux�uxx term in regions of expansion in contrast with the analytic equation. One may
expect that the inverse cascade of energy is the result of small scale instabilities that grow
and �nally saturate. Mathematically, these instabilities will be controlled by higher-order
derivatives. We have performed numerical simulations of Burgers turbulence in which
we turn o� the nonoscillatory approximations in MDPATA in regions of expansion; the
results have numerical oscillations, but are stable. Of course, when the full MPDATA is
used, these oscillations are suppressed, possibly along with some of the physical variability
as well. We believe that an optimal answer would lie between these two results.
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Note that NFV schemes are not constructed with the purpose of zeroing the term
�uxuxx in expansion; rather this is a result of the upstream di�erencing. There is a
strong connection [9] between the nonoscillatory property of NFV schemes and the second
law of thermodynamics, which states that entropy must not decrease in a closed system.
Consider now the �nite volume energy equation associated with MPDATA and recall
that in a Burgers 
uid, the entropy is ��u2. Thus another interpretation of the MPDATA
energy equation is that entropy increases locally in each cell. However, an individual
computational cell is not a closed system. Thus the MPDATA energy/entropy equation
is a su�cient, but not necessary condition to enforce the second law. One might suppose
that relaxing this local constraint, while enforcing the second law in a more global fashion,
might achieve the more optimal result suggested in the previous paragraph.

How might one relax the nonoscillatory property? One strategy (at least conceptually)
would be to enforce the second law on pairs of cells rather than on each cell individually.
Clearly this would require expanding the stencil of the algorithm, and presumably altering
the form of both the third-order and higher-order truncation terms. This approach is
probably not practical, but suggests an alternative | to design an algorithm whose higher-
order truncation terms also have some desired form. The construction of an algorithm
from a desired form of a modi�ed equation, a kind of reverse engineering, is one topic of
our current research.

6 Numerical Experiments

In this section, we justify the use of the modi�ed equation as a tool to understand the
properties of MPDATA, and to investigate the sensitivity of the simulations to the dimen-
sionless coe�cients of the truncation error terms. We also compare several approaches to
LES simulations of Burgers' equation.

6.1 Comparisons of MPDATA and its Modi�ed Equation

Here we verify our hypothesis that the properties of MPDATA may be understood in
terms of its modi�ed equation. We will conduct numerical experiments where we solve
and compare Burgers' equation using two methods: the MPDATA algorithm described
in Section 2, and by direct numerical simulation of the MPDATA modi�ed equation (8).
For convenience we write a general equation in the form:

�ut = � �u�ux + ��uxx + (� �ux�uxx + � j�uxj�uxx + ��u �uxxx) (�x)
2 (38)

+ 
 �uxxxx(�x)
3 +

�
� �u3x=�u

�
(�x)2 :

This form will allow us to test the sensitivity of the modi�ed equation and, once the
correspondence is established, of MPDATA, to changes in the various coe�cients. For
basic MPDATA, we choose � = �1

4
, � = 1

4
, � = �1

6
and � = 0. We also use a coe�cient


 = �1
6
to represent the higher-order dissipation. Note that we have ignored the Courant

number (U) dependence in the coe�cients.
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Figure 1: The initial condition for the multimode random sine wave for both the MPDATA and the DNS
simulations.

We use a direct numerical simulation of the modi�ed equation (DNS-ME) to accurately
compute all the truncation terms. The DNS-ME program uses fourth-order centered
di�erences and is integrated in time using the classic fourth-order Runge-Kutta method.
In this case, DNS does not imply we are resolving the viscous length scales of the problem,
but rather that we are simulating the modi�ed equation of MPDATA accurately for a
given choice of computational cell size and time step. Indeed, in these problems the
DNS-ME method is unstable when only the basic Burgers' equation is simulated (i.e.,
� = � = 
 = � = � = 0). Our test problem is a multimode sine wave, with initial
condition

u (x) =
20X

m=1

a sin (2m� (x� b)) (39)

where a and b are random variables. The multimode initial condition is shown in Figure 1.
Note that this problem contains many regions of both compression and expansion.

The MPDATA simulations use 400 cells over the interval [0; 1], and a small time step,
corresponding to a Courant number of 0:05, to minimize the e�ect of ignoring the Courant
number dependence in the DNS-ME equations. We have run the DNS-ME model with
increasing numbers of cells to insure numerical convergence. We consider two cases, one
with the physical viscosity � = 0:001 to represent large viscosity, and the other with
� = 0:00001 to represent low viscosity. By high (low), we mean that the term ��uxx is
comparable in size to (is much less than) �u�ux, based on scale analysis.

We will use three bases of comparison between the MPDATA and the DNS-ME runs.
First, we will plot the �nal solutions together for each case (at time t = 1:0). Second, we
will compare the time history of the global kinetic energy. Third, we will compare the
ratio of the rate of dissipation of kinetic energy by viscosity to the total rate of dissipation.
This is computed by summing the viscous dissipation on the grid, �uuxx and forming the
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Figure 2: Comparing the �nal solutions for the multimode random sine wave using MPDATA and the
DNS-ME for high viscosity � = 0:001. The right �gure compares the time histories of the ratio of the
viscous and the total energy dissipation rates from MPDATA and the DNS-ME for high viscosity.

ratio, P
i �uiuxx;iP
i
1
2
(u2i )t

: (40)

The results for the high viscosity case are shown in Figure 2 and 4 (left panel). The
comparison of the �nal solutions in Figure 2 is excellent, with tiny di�erences appearing
only at the tops and bottoms of the shocks. We note that it is in these cells that �ux changes
sign. As noted previously, in these cells MPDATA becomes only �rst-order accurate, and
so is much more dissipative than DNS-ME. The comparison of the ratio of the energy
dissipation rates and the energy histories (Figure 4) show similar close agreement.

The results for the low viscosity case are shown in Figures 3 and 4 (right panel). The
solutions are sharper and steeper in this case. Nevertheless, the comparison of the �nal
solutions and the ratio of viscous to total energy dissipation (Figure 3), and the energy
dissipation history (Figure 4) all remain in excellent agreement. These results support
the proposition that the modi�ed equation closely describes the properties of the MPDATA
algorithm.

Finally we describe two experiments with the DNS-ME model where we modify the
coe�cients of the truncation terms. For the coe�cient � of the dispersive term �u�uxxx, we
found little sensitivity either to the sign of this term, or to doubling its magnitude. This
is comforting, for these terms have no analog in the analytic equations. We also note that
it is possible to remove (i.e., compensate) these terms in MPDATA while maintaining its
nonoscillatory character [7].

The results of experiments with the coe�cient � of the nonlinear term �u3x are more
interesting. In principle, this term is closely related to the analytic result of Frisch |
see eq. (11) in section 3. In fact, this term is su�cient to stabilize the simulations with
the coe�cients of all other third-order terms set to zero. The value predicted by Frisch
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Figure 3: The �nal solution for the multimode random sine wave using MPDATA and the DNS-ME for
low viscosity � = 0:00001. The right �gure compares the time histories of the ratio of the viscous and
the total energy dissipation rates from MPDATA and the DNS-ME for low viscosity.
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Figure 4: Comparing the kinetic energy histories for the high viscosity (left panel) and low viscosity (right
panel) cases. The modi�ed equation closely reproduces the MPDATA dissipation but is very slightly less
dissipative.
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of � = � 1
12

is large enough. However, we also note that these simulations are oscillatory
and admit entropy violating rarefaction shocks.

6.2 Large Eddy Simulations

Here we compare several approaches to LES modeling of our multimode problem of the
previous section. Our purpose is to show that the NFV approach can give accurate results
with reasonable computational e�ort, when compared with DNS simulations of Burgers'
equation and with our DNS-ME simulations of the MPDATA modi�ed equations. We
will not compare the NFV approach to any of the many explicit turbulence models for
LES; this represents an important e�ort for the future, but lies outside the scope of the
present work.

In particular, we will compare �ve approaches: 1) a DNS simulation (by which we mean
the resolution is su�cient that the physical viscosity is responsible for essentially all of
the energy dissipation; 2) an underresolved DNS, which uses the same DNS algorithm
but with much lower resolution; 3) MPDATA at the same lower resolution; 4) DNS-
ME of the MPDATA modi�ed equation at the same lower resolution; 5) a standard van
Leer algorithm at the same lower resolution. The purpose of including the van Leer
algorithm, which is an alternate NFV scheme based on geometric 
ux limiting [18], is to
reinforce our contention that it is the NFV properties in general, rather than MDPATA in
particular, which is responsible for the implicit turbulence modeling. A uni�ed discussion
of nonoscillatory schemes based on 
ux limiting can be found in [17].

We use two versions of our multimode problem, both with the same initial conditions
given by (39), but employing two di�erent values of the viscous coe�cients | �1 = 0:0005
and �2 = 0:0002. The DNS simulation of Burgers' equation (7) using 800 cells is well-
resolved for both viscosities and represents "truth" for purposes of comparison. We repeat
these runs using 100 cells in each of our four LES approaches.

For the higher viscosity �1, the �ve solutions are plotted together in Figure 5. Here
the underresolved DNS is generally closest to the DNS, although it is on the edge of
numerical stability in the early stages of the simulation when the shocks are forming. The
MPDATA and van Leer runs are nearly identical. Both reproduce the large scale features
of the solution. Both exhibit small discrepancies in the positions of a few of the shock
peaks and minima, likely associated with the unphysical dispersive terms that appear
among the truncation error. The DNS-ME run is the least accurate. Although DNS-
ME and MPDATA exhibit close agreement in experiments in the previous subsection (cf.
Figures 2 and 3), the coarser resolution employed here (100 cells versus 400 cells) degrades
this agreement.

The kinetic energy dissipation history in Figure 6 (left panel) shows that in the un-
derresolved DNS run about 90% of the energy dissipation is viscid (i.e., is dissipated by
the physical viscosity). This is presumably the reason that this simulation does well |
i.e., this run is "nearly" DNS. By contrast in the MPDATA, DNS-ME and van Leer runs,
nearly half the energy is dissipated by the inviscid terms (i.e., by the numerical method).

18



L.G. Margolin and W.J. Rider

0 1
−0.1669

−0.1

0

0.1

0.1544

 

X

U

DNS

MPDATA

DNS−ME

DNS−Under

van Leer

Figure 5: A comparison of the multimode solutions at t = 1:0 with a larger viscosity, �1 = 0:0005, for
DNS and several LES alternatives.
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Figure 6: A comparison of the multimode solution's kinetic energy decay with a larger viscosity, �1 =
0:0005, for DNS and several LES alternatives.
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Figure 7: A comparison of the multimode solutions at t = 1:0 with a larger viscosity, �2 = 0:0002, for
DNS and several LES alternatives.

The kinetic energy history is shown in Figure 6 (right panel). Each of the LES runs does
well in this comparison, though all are more dissipative than the DNS in the early stages
of shock formation.

The four solutions for the lower viscosity case �2 are shown in Figure 7. Although
�2 is only slightly smaller than �1, the underresolved DNS has become unstable. The
MPDATA and van Leer runs are again in excellent agreement with each other, and faith-
fully reproduce the resolved scales of the DNS simulation. As in the previous case, the
DNS-ME run is the least accurate.

The kinetic energy dissipation history is shown in Figure 8 (left panel). Here even the
DNS run has some inviscid dissipation in its early stages. All the LES runs are dominated
by the inviscid dissipation (the underresolved DNS run was not stable). The right panel
of this �gure shows the kinetic energy history. Again all LES runs compare well with the
DNS run.

To summarize, the two NFV simulations are very similar to each other and are the
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Figure 8: A comparison of the multimode solution's kinetic energy decay with a larger viscosity, �2 =
0:0002, for DNS and several LES alternatives.

most computationally e�cient. Both MPDATA and the van Leer simulations produce
high quality solutions on coarse grids, using a relatively small number of comparisons. For
example, the MPDATA simulation using 100 cells requires only 70 time steps while the
DNS simulation using 800 cells requires 1700 time steps. In terms of function evaluations,
the MPDATA run is about 400 times less expensive, illustrating the value of the LES
approach.

Finally, we note a less quanti�able though nevertheless important feature of the NFV
simulations, namely robustness. When the simulated 
ow becomes too variable to rep-
resent on the grid (for example in the process of shock formation), NFV algorithms add
dissipation selectively to maintain smooth and reasonable solutions. This point is illus-
trated in Figures 2 and 3 by the lack of oscillations at the velocity maxima and minima.

7 Discussion

In this paper, we have attempted to provide a rationale for the success of nonoscillatory
�nite volume (NFV) schemes to represent turbulent 
ow with signi�cant unresolved scales
without recourse to a subgrid scale model | a property we have termed implicit turbulence
modeling. Our strategy has been to demonstrate that the truncation errors of these
methods, as determined by comparison with the point equations that govern the 
uid

ow, have physical signi�cance, and indeed are the corrections necessary to represent the
evolution of a �nite volume of 
uid.

Our principal results are in section 4 and pertain to a one-dimensional 
uid governed
by Burgers' equation. When the 
ow is smooth over some scales of length and time, we
expanded the velocity in a Taylor series and averaged the equations over those length and
time scales. This led to several new terms that scaled with the square of the space or of
the time intervals. For 
ows that are not laminar, i.e., for which the 
uid velocity is not
smooth over particular length and time scales, we made an additional assumption that
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averaged velocity at least is smooth over these scales. With this assumption, we were
able to show that same averaged equations that govern the evolution of laminar 
ows also
govern turbulent 
ows.

We believe this result is important both philosophically and practically. From the
philosophical point of view, it means that the modeler does not have to know a priori
whether a 
ow is turbulent. From the practical point of view, the same numerical models
can be applied to laminar and to turbulent 
ow. Further, in physical terms our assumption
about smoothness implies only that the 
ow can in fact be modeled by discretized PDEs,
an assumption that is usually made implicitly in the application of a model.

In closing this paper, it is appropriate to note some limitations and to suggest direc-
tions for continuing research. First of all, we have focused on one-dimensional Burgers'
equation, but are ultimately interested in the multidimensional Navier-Stokes equations.
Second, one may expect that the analytic derivations will not hold near a wall when the
boundary layer is not resolved. Third, the issues raised in section 5 concerning variability
and the ability of the algorithm to "backscatter" small scale energy into the resolved 
ow
need to be addressed.

Despite the work that remains to be done, we believe that the implicit turbulence
modeling property of NFV schemes represents a useful research direction and an important
simpli�cation to the problem of numerically simulating turbulent 
ows. It appears that
the reluctance of the community in general to accept implicit turbulence modeling is more
due to the lack of justi�cation of the approach rather than any failure of application. We
o�er this paper in the spirit of providing a �rst level of justi�cation.
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